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ABSTRACT

We propose a class of spontaneously broken locally
supersymmetric grand unified theories, where hoth, the weak
doublet and the color triplet of Higgs are massless 1in the
supersymmetric limit. Due to supersvmmetrv breaking, thg
Higgs triplet acquires A mass of order /EﬁkwloloGeV\ at the
one loov level, m and M being the gravitino mass and the
grand unification mass respectivelv. The - Higgs doublet
acquires a vacuum expectation value {(vev) of order /;7§ﬁ
(w105-53ev), Starting from a higher grand unification dgauge
group e.g. SU(6), we can push down the SU(3fXSU(2ka(1)
breaking scale to the same order of magnitude as the

3

gravitino mass m (r10°GeV). These models naturally admit

invisible axions with Adecay constant of order YoM

10

(v10""GeV).
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I. INTRCODUCTION

Sppersvmmetric grand unified theories[1] are of
interest at present, since they provide a partial solution
of the hierarchy vroblem[2]. In the exactly supersymmetric
limit, once a large mass hierarchy is established at the
tree level, it remains stable under radiative corrections.
But since supersymmetry is not a good symmetry of nature, it
must be either softly or spontaneously broken in such a way
that the large mass ratios still remain stable under
radiative corrections. A more recent approach to the
problem{ 3] starts with a 1locally supersymmetric grand
unified theory, with supersymmetry spontaneously bhroken by
the super Higgs mechanism. The super Hiagags sector is
coupled to the observable sector (which involves all the
usual fields in the SU(5) GUT) only through the effect of
gravity. In such a case, the effective Lagrangian in the
observable sector may be written as a sum of the exactly
supersymmetric SU(5) Lagrangian and a set of soft
supersymme trvy breaking terms, whose mass scale is set by the
gravitino mass.

But even 1f supersymmetrv can protect the mass
hierarchy from radiative corrections, there remains a second
hierarchy problem, why is the colored Higgs triplet so heavy
compared to the SU(2) doublet? Two different mechanisms

have been proposed to answer this question, the sliding



singlet mechanism[4] and the missing partner mechanism[5].
Of these, the s3liding singlet model has heen shown to be
unstable under soft supersymmetry bréaking[ﬁ]. Under oOne
loop radiative corrections the Higgs doublet acquires a mass
of order vmM, where m and M are respectively the gravitino
mass and the grand unification mass. The missing partner
model is free from this problem, but it requires a large
number of Higgs.

It has also been pointed out that in supersymmetric
GUTs, 1in order to get the correct baryon to photon ratio in
the present universe, the triplet Higgs mass has to be of
order lOlOGeV, which 1is considerably lower than the grand
unification mass. We may call this the third hierarchy
problemn. In this paper we propose a class of models in
which both the doublet and the triplet of Higgs are massless
in the exactly supersymmetric limit. When we introduce the
soft supersymmetry breaking term, the triplet Higgs acquires
a mass of order YmM, whereas the doublet Higgs acquires a
vacuum expectation value of order Jﬁpﬁﬁi due to radiative
corrections. Taking Mr1017GeV, and mw103GeV, we det a
triplet mass of order 1010GeV, and a doublet Higgs vev of

order 10%°°

GeV. On the other hand, if we start from an SU(6)
gauge theory and assume that it breaks down to
SU(3)x8U(3}xU(1l) at the GUT scale M, then it is possible tp
arrange that the residual symme try breaks down to

SU(3)x8U(2)xUT(1) at a scale of order vmmM and the



SU(3)x8U(2)xU{1l) symmetry is broken to SU(3}xU(l) at a scale
of order m. These models contain SU(3)xSU(2)xU(1l) singlet
fields with vevwloloGeV and hence one can introduce

invisible axions in these models, with decay constant «
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Sec.II of the paper gives an example of the <c¢lass of
models where the doublet and the triplet masses are
generated by the one loop radiative corrections. In Sec.TIIT
we explain how to introduce invisible axions in our model.
The axion decay constant naturally comes out to be of order

lOlOGeV. In Sec.lV, we propose a model, based on the SU(6)

gauge group, in which the SU(3)x8U(2)xU(1l) breaking scale

may be kept as low as the gravitino mass. We summarize our

results in Sec.V.



IT THE MODEL

Our model consists of a set of heavy superfields ¢, R,
R, which, for definiteness, will be taken to be in the 24,
10 and 10 representations of SU(5). We also have a set of
light superfields Z(24), s(1), 2 (5} anda w1} (5), where i
runs over the number of Higgs multiplets we want in the

theory.

The superpotential is,

M, BT+ LN FHMRR + A, FRR +5X,7°

b i A - - n (i) ~ :
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where the mass parameters M; are of the order of grand

unification mass. For simplicity, we have dropped all the
group indices, and also the quark-Higgs interaction terms.
In the supersvmmetric limit, ¢ acquires a wvev of order
Ml/kl' which breaks SU(5) to SU(3)%SU(2)*U(l)., There are, of
course, other degenerate vacua which are 5U(5) symmetric and
SU(4)xU(l) symmetric respectively, but we do not consider
them here. All the other fields have zero vev. The fields
L, S, (i) apg mli) remain massless in this limit.

The effect of supersymmetrv breaking by super-Higgs
mechanism 1s to introduce soft supersymmetry breaking terms

in the action of the form[3],
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m being the gravitino mass. yis denote the set of all

-~

superfields ¢, I, R, R, S, B ana E'Y. pue to the
presence of these explicit supersymmetry breaking terms,
there will be higher loop radiative corrections to the

effective action of the form[8]

Sd'e £ (q, ¥, T, J:) (4)

where f is a polynomial in n, n, v, ¥ and their covariant
derivatives. The terms responsible for producing large

masses or vev’s of the light fields have the following form,

mFr £ CE, M) +mF £(5,5)+m*= £, CE M)+ m's £,(5S)

In the above equation, I, S, ¢ denote the first componentsof
the corresponding superfields, whereas FE' FS denote the
auxiliary components of the corresponding superfields. fis
are functions of there arguments. Typical diagrams
contributing to fl and 52 in one loop order have been shown
in PFig.l. For simplicity, we shall drop the functions fq
and f4 in our future discussion, since they do not

gualitatively change any of the discussions that will

follow. Typically, fle, 0. f2¢<2>,<s>. We have ignored the

()



 or S dependence of f,, since, as we shall see, <I> or <S>
are small compared to <¥> or M. We shall carry out the
analysis including terms of the form mFEf1+mFSf2 in our
Lagrangian, but thfowing away all other terms which may
arise from ({4). The important point to note is that there
is no coupling of Fg to the grand unification scale M. The
first FSM coupling comes at the three loop level, which can
he kept sufficiently small (wFsz).

Adding (5) and (2) to the Lagrangian given bv the
superpotential W in (1), and eliminating the F components of
various fields through their equations of motion, we get the

effective potential,
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where the various fields in (6) denote the scalar part of
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the corresponding superfields. The vacuum expectation value
of ¢ is determined by minimizing the first term, we assume
that the SU(5) symmetry is broken to SUk3)xSU(2)xU(l) bv the
vacuum expectation value of §. The vacuum‘expectation value

of I is obtained by minimizing the fourth term. This gives,

<> = v [ ")

2.
where vwwmM since fl(Q,M) s M. The vacuum expectation values

of 8, H(i) and ﬁ(i) are obtained by minimizing the fifth,

sixth and the seventh term, and the m2[Sl2 term. Assuming,

l ,\i” /)\c-) < IZA(:.)/BA;A) Vizo (8)

5

we have the following three minima, which are the possible
candidates for the ground state.

(A) <H(i)>=<ﬁ(i)>=0. <5> is obtained by minimizing,
2 £ R
[ £ (<>, 5)1" +m?isi (@)
If for definiteness, we take f2 to be linear in <I> and S,
£, (<=>,38) =B v+p:S (1o)
we get,

LSO = 'ﬁlpz U/ C’*‘Fzz) (“)

and the potential at the minimum is,

Vi, = 237 %/ (H—p’f) (12



(B)
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We want the case (C) to be the physical minimum. But
we can see, the vmin in this case is always larger than

in case (B). This problem may easily be avoided by

adding an additional singlet field ¢ which couples to Rﬁ, HH

and has a self coupling proportional to 03, in the same way

as I, <od> contributes to the mass of H, ﬁ. Then, by suitably

adjusting the parameters of the theory, we may arrange that

state of the system, where the weak doublet Higgs is



10

massless, has less energy than the state where the color
triplet higgs is massless.

However, even in the present case, if,

(2/5) (0" /X5 )T <RI/ CHRE), BB et )
(17)

and Aél)/kél) has the same sign as —3182/(1+B§). the
effective potential, expressed as a function of S (by
minimizing with respect to the H, ﬁ fields) have the form of
Fig.2. Thus, if we start from the S=0 state in the early
universe, then, as the universe cools down, it rolls down
towards the minimum given by the case (C), and gets trapped
there with a very large life-time, since the seperation
between the minima (B) and (C) (v v) is much larger than the
difference in energy density between the two minima (~/av) .
In this case, the Higgs doublets acquire vev of order /E;,

017Gev, meOBGeV, we get

as given by (15). Taking M/l
<S>w<2>w1010GeV, which is the mass of the Higgs triplet,
whereas <H>w<H>»/mvs108+5Gev. This is 10" times too large
compared to the physical value. A possible mechanism to

push it down to the same order of magnitude as the gravitino

mass will be discussed in Sec.1lV.
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ITI. TINVISIBLE AXION

Besides keeping the color triplet Higgs at an
intermediate mass, our model has an extra advantage that in
these models one can naturally introduce an invisible axion
with waloloGeV. Since the presence of an invisible axion(9]}
requires the presence of an SU(2)xU(l) singlet field, which
couples to the Higgs doublet, acquires a vev}lOQGeV, and
still does not produce a large mass of the Higgs doublets, a
natural way to introduce it is to have it as a sliding

singlet. To give an example, let us introduce two singlet

fields Sl and S2 with the coupling,

S, HY ND 4,5, P 7" Gg)
in the model of Sec.II. Let us, for the time being, assume
that H(l) couples to the quark bilinear 10x10, and §(2)
couples to the gquark bilinear 1095. Then the model has a

symmetry,

~8 A~y

VIR e?-'@ H'm, )_(Cz)__.(__:,'*"t9 H'(Z)) " e &

?

)':'{’cz)_, ez’s -;{fcz)j S, = e*zle s, s, - 621852 09)

together with the appropriate transformation of the quark
lepton fields. This serves as the Peccei-Quinn
symmetry[10]. When we minimize the potential (which now

(3 * .
includes terms of the form rnFS slf(S,Sl,Sz,Z) etc. coming

1
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from (4}), for a certain range of values of the parameters,

the minimum of the potential lies at a non-zero vev (vv)} for

Sl' Sé and S, such that the mass matrix of the doublet Higgs
has a zero eigenvalue, and a vev of order vmv for the
doublet Higgs. Thus the Peccei-Quinn symmetry is broken by

a large vev (wlOloGeV) of S
10

1 and S,, giving rise to an
invisible axion with walo GeV.

This particular model, however, has dimension five
operators contributing to the prpton decay amplitude because
of the H(1)g(2) mixing term. This may be avoided by
expanding the Higgs sector. We introduce new fields H'(l),
gr(l), g (2, g (2)  pelonging to the 5 and 3
representations, ‘a singlet 8% and the coupling tn the superpotentiat,

iR VP LY I e i e
iy 1=
+,’ s, WP R @o)

We couple H(1) to the gquark bilinear 10x10 and 7' (2 to the
quark bilinear leg. We define the Peccei-Quinn symmetrv of
the model as the transformations (19), together with similar
transformations on the primed fields. TFor a finite range of
values of the parameters, the vev of 5, s', Sl' Sy, will be
such that the mass matrix of the H(i), g (1) sector, as well
as that of the primed sector, has a zero eigenvalue. The
P-Q symmetry is then broken at a scale of order 1010Gev. The
primed, as well as the unprimed doublet Higgsesacquire vev’s

of order v/mv, producing the necessary massecfor the quarks and.
Lleptons.
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IV. A MODEL BASED ON THE SU({6) GAUGE GROUP

In this section we shall consider a model hased on the
5U(6) gauge group. The basic idea iz ihe same as in Sec.II,
but there are -ome iaportant differences that will become

clear as we proceed. The heavy [ields contain an adjoint ¢,

a singlet @, and (6, 6) pair (R, R). The Llight fields
coniain two adjoint fields y and I, a singlet Sgr N pairs of
(6, E} of higgses (H(l), i(i)) (i=l,...n} and n singlets

s{1) | The superpotential is,

W= &2+, 8,F -mM2B, +M,RE + A, BRR

(L) k)

o ) : . n . O
+%, 5, XZ + Z ‘X;”Z Htu ﬁ(u + = t7(‘3“.! S(; H v
L=l ey

+p XRR +p.5.RR + p,x ¥ + =

A=l

F‘:‘} S.(i) R E’
@)

There are two important differences be tween this
superpoteniial and the superpotential we considered in Secs.

II and I1I. First, note that the sliding singlet fields

-~

s(t) couple to the heavy fields R, R, s0 that ¥ (0 will now
S+

have a coupling of the form F (i)mf(¢, M) due to one loop

3

radiative «aorrections. This will force H(I)H(l) to acquire

a vev of order mM¢(1010GeV)2, but, as we shall see, this is

not a oroblem in this case, since H(l), H(l) may be made to
6 b



14

1! , .
acquire a vevfIO‘qﬂeV. Secondly, there is no coupling of the

form sH{Vg(1)  ien i#, so that thev2 is no PO symmetry

which is broken by the vev of a singlet field. Buk this i3
1 : v('i-)i'w 3 ].0
1ot a problem either, since ﬂs 3 Acjuire vevvwl( “Gev, and
hencs "reaks any PQ symme try which involves alobhal
transformation of the H(l)’s.
In the supersymmetric 1limit, the mbnoieintiat  otained

from the superpotential in (21) has a minimum at,

<§Sa>=o <¥>=.£1L '

(Y
)wl
N

. (22)

while all the other fields acquire zerc vev. Again, there
are other degenerate minima with different unbroken symmetry
groap, but we ignofe them here. The potential wvanishes at
the minimum, and hence supersymmetry is unbroXen, which can

be seen by using the identity

(K8>7 )35 = &> -2 v <25 =0 (23)

The vev given in (22) breaks the 30(6) symmetry to
SU(3)xSU(3)xU(l) at a scale of order M1¢1016Gev. If we now
take the effect of the supersymmetry breaking terms into
account, then dJdiagrams similar to the ones shown in Fig.1l

Jive rise to the terms in the effective action of the form,

n ()
M Py $ICEM)+ M, £CEM+mFp £8M) o Z £, (&M)

(z4)
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(1) are each of orler™m, T™Hh2 F

where the functions fl,...f4
components of various light fields may now be obtained by

using the equatisns of motion:

Fe = o (5.Z) + mf B M)+ 8.(RR )35

o] o e ~t
o= X <sex) 2o (Y HY)ys + BRE as +m £ i)
“(rR®),

* , : , .
Fsr = oG CHPHD) 4 m £ ca,m) + s

* . , : . .
':'n,m = 0(;“(2 Hm) + 0(3“4 S ggtal (25.)

Using the fact that <R>, <§>=0 {since they have mass of

orler M), and that £, and £, are proportional to <9>, we may
minimize the potential by setting each of the F’s in {25} 1o

zard by vev of various fields of the form:

e
ZTo>=a,u5 /1 Ix>=v/ a,
1
1 Rz
-1 A,
-1 a's
- a,
~30,-<%y
<s.> = &,
- o 1 !
< thLJ:> — << PQLLJ:> - Cl;f,lﬁ' V< e n
= O l<tv€n , <M< S

HE > = <HE>

< Su;;> - (O(;(‘;’/o{_,";}) Qa, s
@¢)
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i - . ,
where al,...aé ) are numbers f order unitv, calculable in

terms of the functions fl,...fél) and v=/mﬁ$LﬂlnGeV. The
important point to note is that the wvev of the sliding

(1) o (1)
6

S(i) and Hé

singlets , which keep H massless, also keevs
Héi}, Héi), ﬁéi) and ﬁéi) massless. One linear cambinacion
DE these fields is absorbed by the gauge bosons which then
becone mass ive, thus breaking the SU(3)xST(3)x1J(l) symmetry
to SU(3)xSU(2)xU(l). [At this point we should mention that
there are other degenerate vacua, where the gauge group is
broken to SU(3)x7J{(l), or to 8U(3) at a scale of order
10106ev, since the vev of the Aifferent H fields wmay be
directed in different directions. A detailed study of the
contribation from the higher order terms is needed to
determine which wvacuyum has the lowest energy. In the rest
of the paper we shall assume that theg SU(3)x3U{2)xU(l)} phase
has the lowest energv.] Another linear combination of the

fields gets mass from the D terms, so as to produce a

complete massive vector supermultiplet. The rest of the
ﬁ#l), Hél) (m=4,5) fields remain massless at this level.
These - fields may then acquire vev of order m through

radiative corrections as discussed in Ref.[11].
The quark fields may be choosen to belong to the 3, E'
15 and 20 representations of SU(A), which we denote by Qél),

Qéz), Qy5¢ and Q50 respectively. They get mass From the

following coupling to the Higgs fields,

L) ) ~ (L) ey el A .}
iZ{ -a,' &.2’ QlE HL-‘_-YZ IQE;J &,5 H() +Y-'?()&‘5&2GH(-L}

-+ y? on @20 z (-27)
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To see that this produces the corract low energy
spectrum of the gquark lepton fields, let us consider the
d2c0mposition of these fields in terms of yz2presentations of

the 5U(5} subgroup of SU(6):

15— 10+ 5

o = 10+ 10 @8)

Thus the first term produces a mass term:

)~ w O ares ¢z
§(Z N IHMS) Rpez) + Z 2O<HTD Rseq) § Qsas)

(29]

where 95(15) denotes the part of Q15 which transforms as the
5 of SU(5), and similarly for the others. (29) produces a
mass of order v for the 5 component of Q15 and a linear
sombination of the 5 components of Qél) and Qéz}. The
orthogonal 1linear c¢ombination does not acquire a mass at
this level, but combines with the 10 component of Qi to get
4 mass of order m from the third term in (27). This arises
due to the vev of ﬁéi) of order m.

The third and the fourth termsin (27}, on the other

hand, produces a mass term of the form:

(Z 59 <> Qoas) + % T 8y ) Qi o)
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Thus a particular linear combination of 010(15} and Q10(20)
combines with 010(20) to acquire a mass of order v. The
orthogonal combination of QlO(lS) and Q10(20) remains
massless at this order, but gets a mass of order m through
the combination,

n . i 3
E I Rgqsr Qocan =)
!

A‘"-'

It is easy to introduce a Peccei-Quinn symmetrvy in this
model and to prevent dimension five operators to contribute
to the proton decay amplitude, by setting some of the y's to
be zero. (e.g. all the yrs except 7{1), 752), 753) and Yy
are zero.) The Peccei-Quinn symmetry, involving unequal
phase transformations on the H(i)'s, is broken at a scale of
order vmlOlOGeV due to the vev of Héi), thus giving rise ¢to
an invisible axion with decay constant of order 1010Gev.

In this c¢lass of models, the SU(6) symmetry is
spontaneously broken down to SU({3)xSU({3)xU(l) at a scale of
order 1016GeV, which breaks down to SU(3)xSU(2)xU{(1l) at a

1010

scale of order GeV. This may be a good news for the

prediction of sin29w, since it usually comes out to be too

high in supersymmetric grand unified theories. In the

present model, with sin28w=’215, and three pairs of 1light

Higgs doublets, the SU(2)" and SU(3)° coupling constants

meet at a scale of order 1010Gev. Above this scale the
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coupling constants of the two unbroken SU(3) subgroups run

together and meet the coupling constant of the U{(l}) subaroup

0l6

at a scale of order 1 GeV.
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CONCLUSION

In this paper, we have given examples of gspontanecusly
broken, 1locally supersymmetric grand unified theories, with
a natural solution of the hierarchy problem. In these
models, the doublet Higgs, whose vev breaks the SU({(2)xU{(1l)}
symme try, and its color triplet partner are massless in the
supersymme tric limit. Due to supersymmetry breaking, and
the existence of light SU{3)x8U(2)xU(l) singlet fields, the
color triplet Higgs acquires a mass of order v=/mM from the
one loop radiative corrections, where M is the grand
unification scale and m is the gravitino mass. The doublet
Higgs is prevented to have a mass of order v by the sliding
singlet mechanism(4]. But in the simplest SU(5) grand
unified theory, it acquires a vev of order vmv. Taking
mf103GeV and Mr1017GeV, we get a colored Higgs triplet of
mass of order lOlOGeV, and a Higgs doublet of vev of order

106.5

GeV. However, by starting with a bigger gauge group,
e.g. SU(6), we may construct models where the SU(2)¥xU(1)
breaking scale 1is of order m. In these models, we
necessarily have an unbroken gauge group bigger than
SU(3)xSU{2)yxU{(1) above 1010GeV, which breaks down to
SU(3)xSU(2)x0{(1l) at this scale.

In the models of the kind considered in this paper, one

can naturally introduce invisible axions without the need of

fine tuning any parameter. The axion decay constant turns
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OloGeV, which lies in the narrow range

out to be of order v~l
of values allowed by the present cosmology(12].

There are however many technical details which remain
to be studied ( e,qg. the evolution of various coupling
cohstants and mass parameters, as governed by the
renormalization group eguations, the domain wall problem,
etc.). The possibility of constructing a realistic model,

based on the 1ideas developed 1in this paper, is under

investigation.
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FIGURE CAPTIONS
FIG.l: Typical subergraphs contr ibuting to £,(2,M ((a) and
(b)) and fz(E,S) {({c) and (d)) respectively. The external
lines, marked F,- imply that we choose the F components of
the superfields from these lines. From all other external

lines, we choose the first components of the superfields.

FIG.2: The effective potential as a function of S.
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